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REPORT SUMMARY \

This is the Final Technical Report describing the work done and

the accomplishments of the research effort for ONR-ARPA titled "Composite \
Design Synthesis".

The research carried out deals with the problem of design syn- |

thesis in heterogeneous elasticity. Desigzn synthesis is defined as the
achievement of a desired design criterion, i.e., stress distribution, t
strength-to-weight ratio, etc., by preselecting a stress or displacement
pattern in a stretched plate and then determining the variation of the
elastic moduli that is required to permit the desired effects. This accom-
plishment requires the solution of the governing equations of elasticity,
particularly the compatibility equation, in terms of preselected stress
" fields in the body of the plate for unknown material properties which are
spatial functions.
During this work, solutions to the moduli variation problem for
annular disks have been achieved for two stress criteria; constant hoop
stress; and constant in-plane shear stress. The disk may be rotating and
have boundary traction. A computer program, DOMOV1l, was developed to carry
out these solutions. Attempts to solve the moduli variation problem for
a hole in an infinite plate (two dimensional), subject to certain stress
distributions wz2re unsuccessful. However, great insight was gained into
this problem for furure work. =
Basically, this work has shown that the concept of design syn-
thesis, as defined here, is a workable discipline and in the case of
rotating aunular disks and pressurized thick--vall cylinders, can be

applied utilizing the present state-of-the-art fabrication technology,

but that its application to complex problems requires additional work.
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SYMBOLS

Symbol Quantity
a,b inside and outside radius
aij material coefficients
: Ee
c dimensionless shear-modulus coefficient '\EEE)
AO,B ,t’:o,Cl,C2 constants of integration
. _Ej_
e orthotropic ratio ks )
E
Ei modulus of elasticity corresponding to the subscripted
direction (i = r,0)
£ Je
fl(e.),fz(e) functions of © only
G modulus of rigidity (E 6. = —1'>
r6 a
66
g acceleration of gravity
k radius ratio ( =b/a)
k1 orthotropic ratio ( Se)
k2 Poisson's ratic in tangential direction (Ever)
m cos ¢
n sin ¢
| internal pressure
q external pressure
r radius
T temperature difference function
u,v displacements
R,X,Y body forces
l)o specific scrain energy
U total strain energy
X
L .y il ‘L,__ Lk s o oo o - - o -
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Quantity

coefficient of linear thermal expansion
exponent (E-kI/kZ)

material density

strain component wich one or two subscripts
body force in tangential direction

angular position

exponent

Poisson's ratio in tangential direction (Ever)

k) - k2 =
exponent (E - [mj)
dimensionless position ratio (=r/b)
coordinate system offset angle
stress function
rotational velocity

variation factor

arbitrary function




INTRODUCTION

It has long been recognized that structural elements composed of
composite materials, such as glass, boron, carbon, or other filaments, emﬁedded
in a suitable matrix, such as epoxy or polyester, offer outstanding strength-
to-weight ratios. The potential of such materials is considered so great that
material scientists and enginzers believe that they will form the bulk of the
structural materials of the future. Though the application of such materials
has been a growing part of the state of the art for structural components,
particularly in the aerospace industry, thc translation of the concept of
fibrous composites into a primary load carrying structure has been and remains
a challenging process.

The present and growing use ¢ structural elements fabricated from
composite materials creates the need for the development of a rational analytic
design basis, which to a great extent is presently non-existent. This is not
to be construed as meaning that little or no research on composite materials
has been carried out. On the contrary, a large amount of literature has been
generated dealing with both the determination of the mechanical properties of
these materials and the analysis of specific structures fabricated from them.

In general, from the microscopic viewpoint, research on the mechani-
cal properties of composites has dealt with the determination of such properties
for materials having given component elements ordered in fixed spatial
relationships. The spatial relation in these cases might have a high degree
of symmetry, as in long or continuous filament composites, or a completely
random or homogeneously disordered array as usually employed in short carbon
or boron fiber composites. Such research has been directed towards the
creation of analytic or experimental methods of determining the mechanical
properties of composite structures in terms of the known properties of the
composites' components, characteristic of this approach are the works of
Sayers and Hanley [1]*, Chen and Cheng [2], Hill [3], and Gaonkar [4], among
others.

In the analysis of structures composed of such composites, the

material has generally been treated as exhibiting gross, homogeneous,

*
Numbers in brackets are references found at the end of this report.
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isotropic or anisotropic mechanical properties. These gross properties, when
entered into the constitutive equations defining the material, have allowed
analyses of such st 'uctures through the classical methods of the theory of
elasticity, plates and shells, vibration, and others. Along these lines, the
concept of the "unidirectionil lamina" was introduced and utilized as the
"fundamental unit of material" in design and analysis. This procedure
employs test data obtained from a unidirectional lamina as the basis for the
design of laminated components and structures. Exemplary work done along
these lines has been carried out by Dong [5], Tsai [6,7), Tsai and Azzi [8],
Whitney [9], and Whitney and Leissa [10,11], also among others.

All of these analyses have dealt with materials and structures that
have predetermined mechanical and behavioral characteristics. That is, once
the geometric array and the constituents of the composite are prescribed,
then the mechanical properties of the material and the response characteristics
of a structure fabricated from such a material have been inherently established.
An: lysis will merely determine what these properties and response charac-
tteristics are.

When dealing with composite materials, the analytical procedures
discussed above appear to be highly inefficient in many applications. The
designe: of fibrous composite structures is presented with numerous degrees
of freedom and an opportunity to exercise ingenuity totally unavailable to him
with conventional materials. Composites, whether filamentary, fibrous, or
sintered or fused metallics, are capable of being tailored to meet specific
requirements. When considering specific structural applications for such
materials, it would be logical to assume that a structure could be optimized,
depending, of course, upon the optimization criterion, by varying the mechani-
cal properties of the material throughout the structure. Further it would be
logical to bypass analysis completely and define this now nonhomogeneous
structure by some means of design synthesis. Admittedly, the creation of a
design synthesis procedure to adequately handle most problems in structural
design is quite difficult. However, the concept of design synthesis tc deter-
mine the variation of the mechanical properties of a material within a structure
80 as to achieve a desired stress or deformation pattern in that stuucture is

one capable of being developed.




The werk described herein deals with the first piase of an effort ‘
to develop a design synthesis methodology for composites. It is directed

specifically to the problem of heterogenecous plane elasticity.




GENERAL DISCUSSION

Consider the following question:

Given a plane elastic body with known boundary tractions and/or
displacements, can the mechanica) properties of the contiruum be described
such that an "arbitrary' stress alstribution within the body is met?

The term "arbitrary" is to be understood as defining a family of
stress distributions that are preselected but still conform to equilibrium
requirements and boundary conditions. To answer this question we start by
naking the following two basic assuwptions:

(1) the classical equations of linear elasticity are valid in this

application, and

(2) the mechanical properties of the continuum can be expressed as

spatial functions.
Following from these assumptions the well known governing relations of gener-

alized plane stress, given in rectangular coordinates are as follows:

Equilibrium Equations

. do

2 4 X L xe0
ox oy

oo oo
&y Y yryeo0
ox oy 4

Strain-Displacement Equations

S L
€x " 3x ° ey oy ?

xy-ax oy °

Compatibility Equation

aze aze aze
X + Y - Xy :
ay2 axz Oxdy




o e
.

Assuming tnat the continuum exhibits orthotronic meterial proper- \

ties and neglecting time and strain rate effects, the constitutive equations

can be expressed as generalized Hooke's Law as

|
(. W e S
. 2y 32 0 (o, aT 4‘
1% P2 222 O o, * (T ) |
t
. 0 0 0
[ Xy k 66 \oxx e

where o, and o, are the coefficients of thermal expansion and T represents

the temperature difference distribution. The relations defined by Equations

(4) are valid when the axes of the material properties of the continuum are
coincident with the axes selected for the differential equations of the
problem, If the axes are not coincident, except for the z-axes, and the
other two axes of the material Properties are rotated about the z-axis through
some angle, #, in relation to the geometric axes, then more complicated
relations between the stresses, temperature and strains are developed.
Lekhnitskii [12] pri.sents these relationships in some detail. For th: gener-
alized plane stress case in point the material coefficients are related to the
two axis system by

a' Fm4 m2n2 m2n2 n4 lmznz a T
11 11 =,
a'12 m2n2 m4 n4 m2n2 -4m2n2 a),
v | = .22 4 4 24 2 2
a'y, mn n m m n -4m“n a5 (5)
: 4 2 2 2 2 b 422
a'y, n n n m n m m n a,,
. 2 2 2,2 22 2 2 2 .2
a’cs m n -m n -n'n m n (m™-n") ace
SN e af B

where

m = cos 4, and n = sin 4.

No generality will be lost by continuing with the constitutive
equation as given by Equations (4).

Substituting Equations (4) into 3,
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assumihg that the a

ij

differentiation yields:

Assume that the body forces have a potential, V, such that

3% 3%y B 3t
{a tagsmy tA Tt T e
12 ayZ x3y o 21 5o
2 2
+&5 o + 35 (2,1}
J
oy ox
2 2 2 2
o) a, d a9 ) 8y, ) 359
+{ y Oyt o, Ty o0t T 0
ay dy 7 dx dx
2% 2" > 3 > 3
266 PP Wt S i ¥ L :
OXJdy cxy oy ay ay oy 9
' 0a,, 30, +_5366 %9y . 9366 a"ﬁ} oo
dx | dx ox dy = 9y ox )

-1 A
x ox
- . 2X
Y y °

and choose Airy's stress function, ¥, in the form

Ix

2
nu'f'v
2

oy

.'s are spatially dependent and carrying out the required




Making the appropriate substitutions into Equat.on (6) yields

4 4 4 ‘
oY oY &Y .
{322 o +(ay tay, -ag) Sdsyl +a, Ay f

3 3 da 3
3 o S L D S
* 3y (2a)y - age) Tax (Pt - %) g2 25y sy?

3
+ 2 — jl+Laa
e 3x3 oy

B 4 A | s
n 2y 5y oy (2ay t+ 2ay,) 50 } 0 9

and, of course, the equilibrium equations are met exactly,

Notice that in Equations (4), (5), and (9), a,, has not been
equated to a5, e Norm' 11y, under the limit of small displacement theory
dealing with linearly elastic materials which are conservative, the material

coefficient matrix, defined in Equation (4), wou'd be symmetric and a,. would

12
equal ). However, some recent work by Bert and Guess [13], among others,
shows that there exists experimentally derived data which indicate that for
some types of composite materials exhibiting orthotropic properties the

material coefficient matrix is not symmetric and a,, is not equal to a

12 21°

To limit the growing complexity of this work, the material coefficient matrix

will be taken as symmetric, at least for the initial phase of this effort.
Equation (9) can also be expressed in polar coordinates as

follows:

(Note: Here, the aij‘s are in polar coordinates and are . 5

not equal to the a " for rectangular coordinates,) -

13"
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with ¥ being the stress functjon defined by

2
13Y . 1 3%y
o, =T+ + vV
r r d: r2 an r {
a2
o -—‘§+ve (11)
dr
- B Cléif
e 9r \r 38/ °

Equations (l1) satisfy the equilibrium equations formulated in polar coor-

dinates for plane stress which are

Fole 3o o. -0
1l "6 r 8 -
e +r 39+ - +R =0
(12)
do do o
6 ., 179 rf i
or o r 36 * 2 r te=0.

In order for Equations (l1) to meet Equation (12) exactly the body functions

Vr and Ve must be defined as

(13)

thus putting a rather narrow interpretation on the body forces.

In the classical approach to the problem of orthotropic plane
elasticity, the coefficients a4y are either constants, as in the case of the
homogeneous condition, or as in some rare cases, are special functions of
position., In the first case all the terms within the second set of large
braces, { }, in Equations (9) and (10) are zero leaving the remainder of

these two equations in the form of the well-known, homogeneous, orthotropic,
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compatibility equations in terms of the stress function Y. 1In the secord

case all the partial derivatives of the aij's which appear in these second
sets of braces are capable of being evaluated, resulting in extremely compli-
cated fourth order partial djfferential equations with variable coefficients.
Proceeding along classical lires, these equations must be solved for Y which
cencains arbitrary constants of integration. These constants are then deter-
mined by evaluating Y in terms of the stresses on the boundaries.

Suppose it is assumed that the material coefficients, the aij's,
are urknown but that the stress function Y is a fully defined function of the
spatial coordinates. That is, the stresses throughout the body as well as on
the boundary are known. In such a case, Equations (9) and (10) reduce to
second order partial differential equations with variable coefficients, in

terms of the aij's. The solution of these equations and the resultant deter-

mination of the magnitude and distribution of the material properties throughout

the body is defined in this work as design synthesis.

It is believed that Equations (9) and (10) have not been previously
published. Bert [14] derived an equation similar to (10) wherein he reduced
the unknown material property coefficients from four to one. His formulation

is as follows:

4 r . 3" 2_2 3 3r 2 2 2
or or r dr r r or oo

2(c-v) BEY, + 2(c-v+e) QZW + & 34W ]
- 3 2 4 2 4
r 9rdd r o6 r 08
d 3 2, 3
+._S[2M+ﬂ§.l_.e_.l+2Q-\’) o Y
dr 3 r 2 2 dv 2 2
or or r r Arab

_ 2(c=v)te 3% 1+ a’s [aﬁ _vay v 2k
- JER P 0 G T Il B
2 2
_[\,L_G'ZVQ__E_.B_-] (sv)
2 E ' LOF 2 2=\
or r oo
+[12—-+-2—L-3—i](sv)no (14)
arz e r2 392 ’ ’
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with the thermal terms omitted. Equation (l4) is equal to Equation (10) i
with the following identities:

S= a22 {

[

e= a),/ay, {
(15)

¢ = age/2ay, .

VE - a),/ay, ‘

with S being the dependent variable and e, c, and Vv being fixed ratios. It
is anticipated that most real composite materials will exhibit material
property characteristics as defined by Equations (15).

The solution of equations such as (9) and (10) where there are &
or more independent a

's, even where these a_,'s are assumed independent of

ij ij
temperature, is quite difficult but certainly not impossible. The simpli-
fying assumption made in Equations (15) leading to the formulation of Equation

(14) reduces the problem to only one unknown parameter.




APPLICATIONS

Rotationally Symmetric Ircnblems !
{
Example 1: The pressurized annular disk, internal pressure: Counsider a 1
pressurized annular disk as shown in Figure 1. In the case where the ring %
is isotropic and homogeneous, the stress distribution is as developed by
Lamé (1852) and is given by (c.f., Ref. [15], p. 60), i
1 Y
g £ = = - 1 \
r oF \pz ) |
(16) |
dy S <—13 +1) |
k- -1 p
where p = r/b, and k = b/a. These relations lead to the following con-
clusions:
(1) logl>lo,| for a1l o and a1l k
(2) (ce)max occurs at the inner boundary (p = 1/k), and thus
K2 + 1
(ce)max =4 ( 2 ) o an
k =1
From the stresses so generated, which for the homogeneous ring, are auite
independent of the material properties, it is clear that the material is not
being used efficiently, particularly as the thickness ratio, k,'increases.
For the homogeneous, orthotropic annular disk Bienick et al., [16]
shows that the stresses are given by
-(f+1) f-1
By ™ clr + c,T
(18)
-(f+1) f-1
oy = clfr +-c2fr
1/2
where f = (all/azz) , and ¢y and c, are determined from the boundary con-
ditions, in this case o.=-Patre=a and Py = 0 at r = b. This work and
-
4
e e ‘
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FIGURE 1. PRESSURIZED ANNULAR DISK
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work done by Shaffer [17] show that as k gets large the limit of the stress
concentration approaches the orthotropy ratio, f, aud does so rapidly. Both
Bienick and Shaffer deal with the nonhomogeneous case, but both assume a

special form of nonhomogeneity, mainly that

Q22 "85 T

- A
B " "%t
where A i{s :al and 311, 322, and 312 are constants. Both carry out optimi-
zation by varying A and observing the results, but no attempt was made *o
carry out design synthesis directly,

Consider now that the disk is composed of a heterogeneous, ortho-
tropic material where the material properties are undefined but are functions
of the radius of the disk, The equilibrium equation for this case reduces to

do 9. - 9

r r
% * 3 =0, (19)

The compatibility equation reduces to

d
. = (ree) - er =0, (20) Kb
and the stress strain relation for an orthotropic medium is {
€ = 8119, ¥ 3199 .
(21)
€9 = 3129, * 35,9,

where 4115 319» and a,, are functions of r. Assuming a stress function
such that




- ' (22)

oe o dr

and substituting Equations (21) and (22) into Equation (20) and carrying out

the required differentiation results in
a, ¥+ @, +rayw+da.-La jyeo (23)
22 22 'r 22 r 12 r2 11 ’

where the prime marks designate absolute derivatives with respect to r.

Equation (23) is a single differential equation with three independent
material coefficients as the operational parameters. When dealing with specific
materials they may be found to be completely independent or show some type of
defined relationship., As a first step we will assume that there does exist a

simple ratio relationship between them that is expressable as

222 T 85 525, "a,,

217 = kyay,, a'yy =kpa'y, (24)
812 = kyagy 2%y " kpa'y, .
Making the appropriate substitutions in Equation (23) yields
ky 1 k)
[Y' < Y] a'22 + [Y" - ¥Y' - :5 Y] a,, =0 . (25)

Thus if ¥ is known a
material utilization it is desired that % be constant throughout the

22 is fully defined. Let us suppose that for effective
disk; i.e., Og = Ao. Integrating the second of Equations (22) gives
Y= Aor + Bo . (26)

Applying the boundary conditions that or(a) = -« P and cr(b) = 0 yields




with p = r/b and k = b/a as before. It is interesting to compare Equations

(27) with Equations (16) and (17). From Equations (27) it can be seen that ‘
if k is greater than 2, g becomes less than the pressure P, and O which

equals P at p = 1/k, becomes the maximum normal stress in absolute value.

Thus for such a stress function and geometry there is no effective stress

concentration. This is, of course, never true for the homogeneous disk.

With the stress function now fully defined, Equation (25) becomes

kzb ' (1~k1) klb
[(1+k2) i I AT + [ = + rz 8yp = 0. (28)
which has the solution
k -€
m e, 0P [2 4 (aiyp]
agy = Co (0P |2+ (1-ky) (29)
where p=r/b
""
o[
(l-kz)k2

and for the modified orthotropic condition as defined by Equations (21} and
(24)




The inverse of Equation (29) or Ee(r) is shown plotted in Figure 2
for various kl's while k2 was held constant at 0.5. This figure shows the
strong dependency of the modulus distribution upon the orthotropy ratio kl'
The ratio k2 has a lesser effect as shown by Figure 3. Here the isotropic

case (k1 = 1) is shown plotted for five values of kz.

Example 2. Pressurized annular disk, external pressure: Consider the
pressurized annular disk as shown in Figure 1 but with the pressure acting on
the OD rather than the ID as shown., If the stress criterion is retained; i.e.,

gy = constant, then the stress function becomes

LI PR
Y ool (1 - pkl

aole W _
e =33 [p k] (31)
- . gk
% k-1
where q = external pressure
k =b/a
p=r/b .

The compatibility equation (25) becomes

k2a (l-kl) kla
=i ° L] —a =
[(1+k2) -], +[ 7+ ] ay, =0 . (32)

Equation (32) is the same as Equation (28) except that a replaces b. The
solution of Equation (32) is

e 5
a,, = C (0P [;ﬁ + (1-ky) | (33)

where B, §, and p are defined in Equation (29). Comparing Equations (33)
and (29) we see that they are not the same, differing by the quantity 1/k
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within the second factor. Thus the distribution of the material parameters \
through the thickness of the disk must be different as compared to the
internally pressurized disk. This is shown in Figures 4 and 5. Also notice
t that for the internaily pressurized disk the hoop stress g tends to zero as ¢
k tends to infinity while the limit on g for the externally pressurized disk

is q, the pressure. Thus for the externally pressurized case the material is

not being as effectively utilized and perhaps scme other criterion might more
suitably apply.
If the annulus has both internal and external pressure and the same
o stress criterion is applied, 1i.e., Og = constant, then
I e Pb Lb_[ ]
. ¥ k-1["'1] k-1 - Pk
) AL
I O k-1 [p 1] k-1 [p k (34)
| Ll
% " k-1 [P'q“ ’
|
and the material property variation is given by
c (p)®s [— + (1-k )(Pa qb)]-g 35)
| 0P Pa—qa (
|
/
ek l
Example 3: The rotating disk: Consider the rotating, uniform thickness
‘ annular disk as shown in Figure 6. The equilibrium equation governing this
' case is
\ d Y 22
ar (Fo.) - oy + g VT 0. (36)
The compatibility equation in terms of strain and the stress-strain relations
| for an orthotropic material are given by Equations (20) and (21), respectively.
Substituting Equation (21) into (20) results in
] Sy 1] 1] ] l = -
I 0=al100, ¥ 310" 2 yy0 + a0’ ¥y appa) ), + (ayy-a;,)0, 1. B
) \\
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Assume the stress function

(38)

It is possible that the material density, y, could be a function of the
radius. At this stage such a conditicon introduces an unnecessary complica-
tion and will not be considered. This being the case the governing

compatibility equation becomes

a' a
i ol 1 ( 12 _11)
! ¥ii(agy) +¥0(aly, + 8 + ¥\ r2)
i b
' Yy 2.2 ; 22 12>
[. + s wr (a 22 + 3 - . ¢ . (39)
l Again, for simplicity, the modified orthotropy relations as defined by
' Equations (24) will be adapted making Equation (39) take the form
y' V 2 ]
= — ll
0 azz[\y+ Y+ mr_,+a22[‘}’ r(3-k,) (40)
P
/
}FA- The stress criterion will be the same as before, i.e., Oy =

constant, Using this criterion and operating on the second of Equations (38)

’ together with the assumed boundary conditions that cr(a) = or(b) = 0 yields

| 3 () [ -35) - o1 -p) - ()0 -]

' 2

L 1 1 2 p~

0‘ (- [1-_-—,:4'—-9 + (41)
g k-1 ) 7 pk3 k J




1

r/b

where P

k = b/a

<
n

wb = tip velocity

€
.

- rotational velocity, radians

g = acceleration of gravity.

Here we note that in the limits, when k =+ 1

2
o = 1o (42)

which is the stress in a rotating thin ring, and when k + © (i.e., when a

very small)

= o (43)

which is smaller than exists for the isotropic, homogeneous case by the

ratio
(—- (44)
6 )max 3(3+v)
where Ty = hoop stress for heterogeneous case

1

O = hoop stress for isotropic, homogeneous case
o

v = Poisson's ratio for isotropic, homogeneous casez .

Substituting Equation (41) into Equation (40) and carrying out the
required differentiation yields

[Ar + Br + D ] ay, = (45)

Fr + Gt




e

———-

26 '

D = k, (ab) (b+a) !
F=k |
2 b3-a3 |

G =) T
f
H= kz(ab)(b+a) . ﬂ
]

Equation (45) is not readily solvable in closed form. Before proceeding
to the solution of Equation {(45) by some numerical means, it is convenient
to digress at this point to discuss another stress criterion which may be \
applied to the implementation of design synthesis as defined in this '
work. This criterion is that through the body of the disk, the in-plane

shear stress, 1, is to be a constant. For a body of revolution, acted

upon by symmetric loads,

T = (oe-or)/Z
or
T = 0,-0, = Constant = C, (46)

Applying this condition to Equations (38) and integrating leads to

202
.!'.\y.cgnr..lNL.g.c
T (o] 2g 1
3y 2r2
¥'=Cinr + C - == 4 C
<} o 2 g 1
(0
[°) 3
Al g Yot

requiring that on the boundaries;
or(b) =0,

or(a) =0,

leads to the following relatiocns.
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g_= lW =Conr -2 4
T o

T 2g 1
l2r2 2 2
o, =y' + X2 ¢ (&nr + 1) - Wr o,
6 g o 2g 1
1 :ywz 2 2
Co == {(co-oi) + _ZE(b -a )}
n —
C, = = o nb - 0 &na - 193 (bzz - a22 b)i
1 b )1 o " 2g na n

in —
a

These relations, as well as those defined by Equation (41) (%3= constant)
were applied to Equation (40) and were solved numerically. A digital
computer program, Determination Of Modulus Variation 1 (DOMOV1), was
structured for the solution of these sets of equations. A finite dif-
ference method of solution as developed by Manson[18] was used for the
calculation algorithm. This program, which is detailed in the Appendices

was used to solve several problems as follows.

e The modulus variation for an orthotropic disk with

a pressurized I1.D. for % = constant (disk not rotating)

e The modulus variation for an isotropic disk with

pressurized I.D. for o_= constant (disk not rotating)

e
e The modulus variation for an isotropic disk with

pressurized 0.D. for Oy ™ comstant (disk not rotating)

e The modulus variation for a rotating orthotropic disk

with no edge loads for 0y = constant

¢ The modulus variation for a rotating orthotropic disk
(Poisson's ratio variable) with no edge loads for

Ue = constant

¢ The modulus variation for a rotating orthotropic disk

with no edge load for constant in-plane shear stress

e The modulus variation for a rotating orthotropic disk
(Poisson's ratio variable) with no edge loads for

constant in-plane shear stress

(48)




28

e The modulus variation for a rotating orthotropic
disc with 60.0 inch 0.D., 6.0-inch I.D., turning
) at 2,000 RPM, stressed on the 0.D. with an

uniform edge load of 10,000 psi for Oy = constant

o The modulus variation for a rotating orthotropic
disk with 60.0-inch 0.D., 6.0-inch I.D., turning
at 4,000 RPM, stressed on the 0.D. with a uniform

| edge load of 12,000 psi for Og= constant.
' . The solutions for the first four problems were checked by use of the closed
i form solutions, Equations (29) and (33) and are those shown plotted in

Figure 2, 3, 4, and 5. The solution to the remaining problems are shown

{ plotted in Figures 7 through 12, It should be noted here that when
boundary tractions as wel. as body loads are applied to a rotating disk,

| i' the solution is specific as regards the magnitude of the edge loads and

} the rotational velocity of the disk. However, where only one type of load

, i is imposed, then the solution is generalized and is independent of the

magnitude of the load. (Note: The stresses remain directly dependent

on the load.) This solution dependence upon load is shown very clearly

by comparing Figures 11 and 12, Here the modulus variation is shown to

change with the change of the boundary tractions and the rotational

| 2 velocity. All these figures have been non-dimensionalized by the expediency
N“{ I of plotting E/Emax and R/B where
} [ E = Ee, the modulus of elasticity in the 6 direction.
s the maximum Ee calculated in the body of the disk.
L R = the radius of the point in the disk at which the
modulus 1s being calculated.
B = the outer radius of the disk.

The computer output for the curves plotted in Figure 12 is also found here

{ in Appendix C. For this case, o, equals 28,454 psi throughout the disk.

0
' For an isotropic, homogenious, flat-angular disk of the same material
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density o, would equal

0
IHv 2,2 l1-v 2 b2
ce-pr ) +ma)+20° CB) (49)
b~ -a
Ue = 35,810 + 24,242 = 60,052 psi.

Thus, by the use of design synthesis, the maximum stress in such a disk
can be reduced by a factor of 2.11. Further, Figure 12 shows that this
can be achieved with a modulus variation through the disk of approximately

2.5 to 1 for a material that exhibits and orthotropic ratio k, of 2.5

1

(the similarity of the two ratios is coincidental and bears no significance).

Non-Symmetric Problems

Example 4: Small hole in an infinite plate. Figure 13 represents a small
hole in an infinite plate which is subjected to a uniform tensile stress, P,

in the x-direction. For the homogeneous, isotropic condition, the stress

distribution around the hole is well known as given by Timoshenko [15] as

2 4 2
P a), R 3a_ _ 4a
o == (1 B 2) + % (1 + ol ) cos 29
r r 3
2. 4
P a P 3a
ce.i(l+_—2.)-i(1+T) cos 26 (50)
r r
4 2
P 3a 2a

The maximum stress occurs at r = a, 8 = (1/2,3n/2), and is

c = (o = 3P .,
max 0 1‘"0,9“11/2

For the homogeneous, anisotropic .. 'dition work by Green and Zerna (19],
Hearmon [20], Savin [21], Leckhniskii [12], and (as directly applied to

composites) by Greszczuk [22], shows that the maximum stress at the hole is

usually greater than for the isotropic case and can reach values as high as 9P.




SMALL HOLE IN INFINITE PLATE SUBJECTED TO
UNIFORM, UNIAXIAL TENSILE STRESS FIELD

FIGURE 13.




Referring to Figure 13, consider the portion of the plate within

a concentric circle of radius b, large in comparison with a. It can safely
be assumed that the stresses at radius b are effectively the same as in a

plate without the hole and can be given by {

(o’r) as'% P (1 + cos 29) |

r=b
1 (1)
(Ul‘e)rcb ~ -3 Psin26 . {
From Equation (50) it can be seen that
(c,) zlP(l-cosze)
% rsb 2 ’
It seems reasonable, then, to choose a stress criterion for the plate
1
oy = function of 6 = 2 P (1 - cos 29), (52)

From the second of Equations (11), with V equal to zero the stress function

becomes

y -% Pr? (1 - cos 28) + £,(0)r + £,(8) . (53)

where fl(e) and fz(e) are functions of 6 only. Applying the first and third j
of Equations (1l1) to Y results in

. df,_(8)
a— lﬂ K - -l - ']--‘ L) 2
dr \r ae) Opg =72 P sin 28 2 T
(54)
- e @ , a2 (o)
r 36 ‘ ardd r de
Applying the boundary conditions
( - = 0
.crr)r."l (crre)l_“a

yields
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2
d fl(e)

d 2

+ £ .(6) = -
do .

Choosing as a particular solution to

fl(e) = c1 +

r yields

| Pa
£,0) =-7

& and results in

2

£,(8) = - 2= cos 20

(55)
[1 + 3 cos 20] .

M e

the second of Equations (55)

C, cos 29 (56)

[1 - cos 28]

¥ -TI:{(rZ - 2ar) - (r - a )2 cosze}

P a
or = 2 (l-r)[l-cos

Nl

O‘e"

N fro

Trg

a
29 + (1 -r>cos 26]

(57)

. ~co8280)

2
a

(1 --r—z)sin 29 ,




The stress function, ¥, as defined by the first of Equations (57) was
applied to Equation (10) with the body functions and temperature difference
taken as zero. In order to implement a solution, the following relation-

ships among the material coefficients v *re assumed.

a)) = kjay,

A finite-difference algorithm was structured to carry out the solution.

The method of solution applied was that usually referred to as the

"relaxation method" which is discussed in detail by Shaw[23], Hildebrand[25],

Allen[26], and Richtmyer[27].

Due to symmetry, only one-fourth of the plate was modeled. A
square mesh was used and the quarter plate separated into a square array
of 61 x 61 nodes. It was assumed that the circular hole has a radius of
1.5 inches and the mesh distance, h, the distance between nodes, is 0.25
inches. The width of the quarter plate model, thus became 15.0 inches.
This gave a b to a ratio (see Figure 13) of 10:1, thus minimizing the
far-field effects of the outer boundaries upon the stress around the hole.
This plate model is shown in Figure 14. Rectangular ccordinates were
employed and the differential equation that was differenced was that shown
in Equation (9). Equations (57) were converted to rectangular coordinates
for input to this program. In the solution procedure, it is necessary
to assume the values of the modulus parameter a,, at all boundary nodes.
The solutions were then to proceed in an iterative manner until the
values for a,, were determined at each interior node in the model. No
success was attained by this method. The program never was able to
converge to a solution. In fact, a strongly divergent tendency was noted

(i.e., each iteration on the 822'8 at each node point was markedly greater
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on each iteration in the relaxation process than the iteration which it
succeeded, regardless of the boundary values assumed.) Extensive investi-
gations indicated that ther= was no error in the solution process. It
appears that there must be some other governing relations which hav . as
yet not been expressed.

As a result, no solutions to the two-dimensional problem in

design synthesis have as yet been accomplished.
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Limits and Other Considerations

In the preceeding discuseion, it was pointed out that a solution:
for the two-dimensional problem could not be achieved. This raised ques-
tions as to whether all governing equations have been generated. In the
application of the one-dimensional program, DOMOV1, it was found that
under certain conditions, the only mathematical solution developed for
the modulus variation in a disk would require that at some points in the
disk body, the value of the modulus must be negative. Though this is
perfectly acceptable from a mathematical viewpoint, it obviously cannot
be implemented from the viewpoint of real materials. To illustrate this,
consider the case of the rotating annular disk with boundary tractions
when subject to the stress criterion that the in-plane shear stresses

throughout the disk must be constant. From Equations (48)

2.2
= - Yo I
9, Co(znr + 1) 28 + C1
2w2 2
o = Coznr - 28 + C1
C = {(o -g,) + l“ﬁ(bz-az)}' (48)
° n b o 1 2g
a

1 2 3 2
C, = —— }o,onb-0 na - ¥¥— (b“tna-a 2nb)}.
1 . b i o 2g
n—
a
Take the condition where the disk is not rotating; i.e., w = 0, then
oo-o:l
s Ln'h
a
o,2nb~c %&na
B m et (59)

&n'-‘2
a

Q
]

Co(znr+1) + C1

Coinr +C (60)

l .




Substituting Equation (59) in (60) yields
{(oo-oi) (Lnr+l) + oilnb-oolna}

1
o, o 5 {(oo-oi)lnr + oilnb-oolna} .
. .

Now, further assume that o, 0, o, = -P . Then, Equation (61) become

P { b}
d l-2n—
P.n-l-’— K

a

Pb {ln %}
fn —
a
Note that for all values of r < b, O S -P in the algebraic sense.

However, if % > e, (2.71828), then at r = a, 2n % > 1 and % is negative.
Defining the displacement at r = a as

1
u(r-t:\) -(E(e) [oﬁ-wr]> Ir-a

. 1 P b b
U(raa) - 5067 3-—1“‘2 [1 - 2n 2 +tvin ;]‘

1 P b
U(r-a) = m‘y{ln—k [1 - 2n iy (1-\’)]2 .
a

From Equation (63), if 2n -g > ﬁ-\; tken the term in the brackets is negative
and U or E(6) must be negative. If either is negative, then the system
must do negative work, which is not possible for real materials. This,

of course, can be overcome in a nimerical sense by simply requiring that
only those solutions are acceptable which yield a material coefficient
matrix that is positive definite at each point in the body; i.e., the

following conditions must all be met:




e o

2
1812 "3 2 0
a,.a,,a,, - a2 a,, >0
11722766 12766 —
Thus, it is clear that the "arbitrariness' of any stress conditions selected

are restricted to more than conforming to the equilibrium equations and

the boundary conditions.

Two Dimensional Boundary Considerations

It is instructive to approach this problem from the viewpoint
of the calculus of variations. Consider the total strain energy in a

stretched plate _f unit thickness:

U =S, Udxdy ,

U° = gtrain density at a point

]

- %-[o € +0€ +1
X X yy

xy ' xy

Assume a Hookien material, neglecting time and temperature effects,

12°y
ey = a12°x + azzoy

Ex = anox + a

ny " a66Txy

and a stress function




Such that Equation (65) becomes {

2 2. 2

2 .
verrd [an (53) + 22 (315S)

ax 7/ 1\ oy

2 2 2

2
Y Y
+ 822 ( axz) + 866 (W) ]dxdy . (68)

Following the method of Weinstock[28], the extremization of (68) is
affected by forming the integral I(§) by replacing ¥ in the integral
of (68) by

g = ‘y(x’}’) + Gn(x’}’) ’ (69)

where ¥(x,y) is the actual extremizing function and n(x,y) is an ar-
bitrary function that is twice continuously differentiable. Then, the

integral I(8) is an extremum for § = 0, so that

1') =0 . (70)

Writing f(Vxx, ny) = the integrand of Equation (68), and here the

¥ o
yy
subscripts refer to differentiation with respect to x and y. Then,

according to (68) and using (69) to compute




and I'(8) is formed and § is set to zero, resulting in '

' - af of of -
1O = 1y (37— Yt T Ty * 3 ey) XY = 0, (72) ‘
xx Yy xy
f
according to Equation (70). Integrating by parts and employing Green's {

theorem results in the transformation of Equation (72) to ‘

2 2 2
] of ] of ] of t
iy zn[ ( ) + ( —\+ +( )]dedy f
A ax2 awxx 3 2 EWy ox3y Bny .

y

3 [ of 1 3/ of of 1 af |}
i fcz"[ay(aw )+23x (aw )] "W T2 "x v ;d"
yy xy yy yy

Noting that

ﬁi_y‘ aee(axay) " Vxy "

(Note: Confusing subscripts. Subscripts on strains do not refer to

differentiation.)

thus, the area integral becomes

825 825 327
1 gn [ » 15 X _ xy]idxdy . (75)
A

8x2 8y2 9x3dy
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Since (73) must hold for arbitrary n, it must in particuler hold for those
n for which n = n % ny = 0 on the boundary C. For such n Equation (73)
reduces to the well-known compatibility equation as previously derived

(see Equation (3)) and the resulting (Equation (9)). For arbitrary n, Nes M

y’
other than zero, the boundary relations must be derived from the remaining
line integral portion of Equation (73). The first part of the line inte-
gral becomes, along C on y = constant,
n[aau R o B VR . +Lay 2%y, 1 2% azv]
oy 2y2 113y3 oy ax2 12 2 766 ax2ay 2 3x  Ixdy
2 2 2
Y 9 Y 1 9 Y
-n la,,— + a —] -n —[a ]=0. (76)
y [ llay2 123x2 x 2]669x3y

The last two terms in Equation (76) are

1
- n [ex] ‘[“x E‘ny] : 77
If these strains are not prescribed as zero, then along this portion of

the boundary n = ny = 0, and the boundary equation which must be satis-
fied is

%817 a2y . a. a3y 8y, 32 1 2y
5 , SRS i 7+ (@)% 3 356) 3
Y ey 3y Y oax ax“dy
%a 2
1 %66 %y
2 Tk gy 0, (78)

and a similar set of relations can be written for the second part of the
line integral. These equations have, at best, a very limited application
other than showing that other constraints do exist on the boundary.

Their limited application is due in great part to the choice of a rectan-
gular coordinate system. All attempts to date to express these relations

in terms of other coordinate systems, in particular those using generalized

normal and tangential components have been unsuccessful. More work must
be done along these lines.
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Material Considerations

Finally, just a brief note on the possibility of achieving a
material with tailorable properties. It is sufficient here to say that
work by Adams and Tsai[29], Dimmock and Abrahams[30], Hewitt and Malherbe[31]
Halpin[32], Halpin and Pagano[33], Kohn and Krumhansl[34] Tabaddor[35],
Fotinich[36], Wang[37], and Fokin and Shermergor[38], among others, have
clearly established that material properties for composites of various
types can be established by a knowledge of the known properties of the

constituent materials, their orientation and their relative density.




a4

SUMMARY

Mathematical design synthesis has been shown to be possible in ‘
certain specific applications. The selection of a design criterion in {
the cases discussed, two dealing with stress distributions, and the 1
development of the material property distribution within a plane body
such that compatibility is satisfied, appears to be a rational basis

of design for composite materials. Difficulty has been encountered in

the solution of two-dimensional problems employing this concept due to
the, as yet, undefined boundary restraint requirements which affects

the selection of the stress criterion to be met.
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APPENDIX A-|

INPUT DATA FOR PROGRAM DOMOV1

Five cards constitute the input data for DOMOV1 for each
variation to be studied. These five cards represent three (3) data
sets. As many runs may be stacked behind the initial set as required.

The computer run will terminate when an End of File card is read.

Data Set 1 (Title Cards)

READ (5, 10) (ITIL(I, 1), I = 1, 24)

10 Format (8A10)

Any information can be placed on these three cards. It is

necessary to have three cards, although any can be left blank.
Data Set 2

READ (5, 20) RO, RI, RPM, DENS, N, IBOND, IST

20 Format (4F 15.0, 3I115)

RO = Quter Radius, Inches

Ri = Inner Radius, Inches

RPM = Revolution per minute of Disk
DENS = Material Density of Disk, lb/in.3
N = Finite Difference Increment and Printout Number

IBOND = Type of Boundary Condition on Inner Radius

0 = A stress condition

1l = A displacement condition
IST = Type of Stress Criterion Chosen

1 = Constant theta stress

2 = Constant in-Plane shear stress .

T I T R R TP T e
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Data Set 3

If IBOND Equals O,

READ (5, 40) SsI, SO, ORTHO, PO, ETHETA

40 Format (2F 10.0, 3F 15.0)

SI = Radial Stress on Inner Radius
SO = Radial Stress on Outer Radius
ORTHO = Orthotropi? Ratio, Er/Ee

PO = Poisson's Ratio

ETHETA = Modulus of Elasticity in Theta
Direction at the Inner Radius .

If IBOND Equals 1

READ (5, 30) UI, SO, ORTHO, PO, ETHETA

30 Format (2F 10.0, 3F 15.0)

Ul = Selected Radial Displacement of Inner Radius .




Reproduced from
best available copy.

_ _APPENDIX B
LISTING OF PROGRAM DOMOV1 l
\
PROGRAM NOMOV1L (INPUT,DUT UT 4 TAPES=TNPUT 4 TAPFE6=0UTPUT) poM I
—-C ... . ) e e DoM 2
DIMENSION R(131),TTHET (1(7)E0C(1L 5) \A220(135) 4 C6 (100D 0Dt1c2), noM 2
—— =8 L L PHIULZ3)4PHIP(122) 4PHIPP (1004 SIGRI13C)4STGTILCL) ,UCL120) DOM & f
t RDP (LG N ITTLI2L, 1) oM 5
_DIFINSION 38(15u) 4AA(L.21.EE(20D) DOM... €
c oOM 7
JESS I R e ie— .. DDM B
COMMON R, PHI, PHIP OHIPP,SIGR,SIG oo™ q
R - poM 1€
c 00M 11
— S PEAD (S,12)_ (ITIL(I.1),151,26) .00M . _12
10 FORMAT (841() ) noM 12
oo —~  IF(Z0F,5) 12.,15 = = . .. A 00 1
15 READ (5,2.) R0,RI,RPM,DENS,N,IBIND,IST 004 i€
—emee .20 FORMAT (LF15,0,315). _.__ . e e . DOM 18
IF(IPOND-1) 35,25,2% : DoM 17
— 25 READ (5,3.) UI,SO,NTHN,PN,ETHETA _ -.DDY ..1¢
3C FORMAT (2F1(.2,3F15..) : poM 19
—_C .. RO . =DUTZR RAOIUS, INCHES —— i P S N LI 3
c RI =INHT® OLDIUS, INCHES nov  2:
—C. _____.RPY _ =REVALUTIONS PZ© MINUTZ OF DISK R Doy 22
c DENS zMATZOTAL NENSITY OF NISK, LA./CUSTC INGH po¥ 27
C N__. FFINITE CYFFERONCE. INCREMENT_NUMOER ____ _ __ __ _ ____ DOM_.2&
c 180H9 =TYPZ NT NAOUNNARY COMDTITION ON IMNER RADIUS 0o0M 25
— C 0 = A STRESS CONNITION . _  _ ___ . S 004 2¢
c 4 = A DISPLACIMINT GONDPITION noM 27
T .. IST. =TYPE OF ST2ISS CRITERICN CHOSEN. PRESENTLY pov 23
c 1 = COMSTANT THMITA STRESS 00M 29
c .-2. = COMSTANT. IN=-PLANE_SHEAR_STRESS ...DDM 3
c Ul =RANTAL NISCLACEMENT 0F TNNEQ RANTUS pov 1
- C S1 . =RADTAL STRESS ACTINA ON INNER RANTUS . nov 12
c so =RANTAL STPESS ACTIMG ON NUTER wANTUS ooM 33
—. 0. . ___ OPTHD ..  =0ORTHDTROPIC RATIO, E-SUS=-R/E-SUS-THETA . ‘e . DOM 34
c PO =POISSNNS RATIN IN THE THETA=-R OIRICTION noM 35
C.. EYHETA____=4O0DULYUS. 9% _TLASTICYUY_IM THE THETA DIRECTIOM_AT_ . ___ DOM_ 3¢
c THE TNNS® RAQTUS nov 37
R I ROB =RATID OF THI RADIUS DVEP THE DUTEP RADIUS . DOM  3e
c €0C =RATIO NF THI MONULMS DVER THE MAXIMUM MODJULUS noM 39
—-nC o .. __..._FOUND IF THT BONY OF THE_OISK. __ __ _ __ . __._. .. 0DOM &:
c PHT =THE STRFSS FUCTION onv 41
c_.. PHTP __ =THE _FIRSY DTPIVATTVF_DF THF STRFSS FUNCTIOM _  DOM _ 42
c PHIPP =THF SECOND NERIVATIVE CF THE STRESS FUVCTI’)N noY 42
c SIGe =RANIAL STOESS e ol e e -l D01 4
c SIGY =CICRUMFERTINTTIAL STRESS D04 45
.- B v , =THE PADIAL DISPLACEVENT . ___ ___ _ .. _.. .. DOM 4k
c ETHEY =THE CALCULATED CIPCUMFERENTIAL MODULUS AT FACH 0oM 47

— . S ———- . . . . - e e mmme tmimivmmmtes e = e e amecwmes = e -
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B-2

c CALCULATINM POINT IN THE OISK OoM

c. _ A22. =1 C/ETHET . _ —DOM

GO TO uS no4

—— 35 .PEAD (S5.U4.) SI+«SO,02THO,POLETHETA_ _ o004
&6 FOOMAT (2F1f ,(42F15,.) oL

45 PO = (~2..)%0Q DOM.
PI=3.,141592K5 poM
—_—————. OMEGA=(OOM*D Y /(2 _,UY _ _ _ DOM
GRHO=(NINS)* (OMEGA*%2,2)1/7(396.4) ooM

~A22(1) =1, C/STHETA . .. 00M
ETHET(1)=ETHFETA 0DOM

—_ Rt1) =01 pov
DEL=(RO-TV/ (N=1) DOv
e DO .50 I=2.N . o0H
J=1-1 OOM

—————- 2(TY=RUJY$DEL - e e o= .. DOM
SC CONT INUE nDov
RAzRO/°L . . nov

CALL STRISS (NyRAJGRHC ,ST.SOLUT,0PTHN,POLETHSZTA, ICOND,IST,R1,RO) nov

vieiee =.. . DO 535 I=1,N . s [ e D —— DOM
AACTI=PHIP(INH(POTPHTLIVIZ(RIIII A (GRHO*(R(T)I**2,35)) nou

——— e BBV =PHICPP(IV¢PHIP(I}I/R(I)=. (ORTHO*PHI(INI/Z (RII)**2,.) +(GRHO*2(I DO
$)1*(3..~-P0)) oov

o ~CC(1)=0A(11/AA(1) ocv
56 CONT INMUT neH

—_— .. DDt1Y=Q2, i S e e = . DOV
EE(LY=20," pov
—_..D0_67 XI=2,N___ __ o | O [
J=1-1 oo
—_——ee . BDUI) =1, 24CC (V2P (I)=P(U)Y 7 (2,00 ) ___Dnu
FE(T)I=1. " =CoiN* (2 (V=2 (NN)V/2.2 nov
A22(IV=(EC(TI/COIINY*(A22(I)) e oo . ——— - - - 0C
ETHET(IV= 1.,3/7822(1) nou

—e—- B CONTINUZ _. = PR -. .DO™
EMAX=", noM

0685 I=1,N___ 00M
EMAX=AMAXL(ETHET(T),SMAX) nou

eee. 65 CONTINUZ B Sy el e i M g B .. DOM
DO 7¢ I=1,N oo~

e RPOBLIN=R(TYI/RO 004
EOC(II=ZSTHIT(T)/7FMAX nov

—_ ULI)=a22(1)*R(I)* (SIGT 1) +PQ*SIGRLI)) ne
76 CONTINUZ now

. PD==-1,0%0n e L o T e e g o i~ g S N " pov

HRITE (5,75) (ITIL(I,1),1I=1,24) nov

e 15 FOPMAT (1H148A15/71H oPAL:/AH BALC//Y)Y o e o e o, pov
IF(IROND=2) B,1.6,11% noM

e 8L HRITE. (5485)1R0421922Y9S74SI+ETHETAGPO40CTHNGDZNS N . ... oo™

L)

52
51
52

=53

54
5¢
5¢
57
53

.59,

67
61

62
64
55
S€
67
68
5¢
7:
71
72

73.

74
75
143
77
70
79
3¢
X1
32
3'!
aL
3c
RE
3?
82
8¢

9t
32

92
94

95
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f

.5—5 FOR'AY

(5X,S3IHNETEOMINATINY OF MOOULUS VARIATINN IN AN ANNULER NIS ooM 96
Sy /7 31Xs 1. HINPUT NATA,/ 1Y 1CH® veesener 7/, 65X, 1SHOUTER RAOTUS = noM g7
SF15. U 2Y J15HINNER OANTUS = (F12,442X6HOPM = (F10,24/7+5X,3LHRADIA NOY 98¢ F,
- _ . 8L STRESS, OUTFR RANTUS = F1G.2+2X,ICHRADTAL STPESS, INNERP RAOINS NOM 39
S JF10.2¢/7¢5X426HETHETA AT INMNZIR RADIUS = W [PE165,74,2X,17HONTSSONS NOM 458 U
S RATIO = (F1.48+2Xs2ZHORTHOTOOPIC RATIO = WFiCelo/745X,19HATERTAL NOM 122
S DENSITY = JF1).5,2X,26HNMAER OF RADIAL ©PO0INTS = ,134//7) noM 132
ee. 90 NRITE (6495) . 1 - e S —-—-..DOM 123
95 FOPMAT (1X,11HI3UTPUY D-\fﬂ‘/'ix 11”"""""' 7/ o 7X ‘)HQAOIUS gy 6% NCY 174
e SETHETA 9% "HSINMA=P 83X 4 7HITIGMA-T ,, 1 X LHR/FD, 10X4 LHE/Z0,12X, 7HU-SUT DOY 1_'.'5
g-o'/"lx'r,uooooo"qy'r,pwoucl'qx'7H'o'o""5x'7Hlovoovv'iqx'gHoboo' neM 176
SAIXLHErrr 1 Y THER BRSNS 7)) _poM 127
NRITE (H,o1J3)(R(TY, CTHET(TY ,SIGR(T1)(SIGT(IV,PON(I)EOCLI), U(I)sI=1 NNM 438
e — . $.\) e e TS e mmea e DO 139
17 FORMAT (5 ti.a‘b 22X e 1P T L e A F 7 e Lo AN F 720 EXFRO BN FTely6Xy poM 11¢(
———.--3E12.6) R —e— -D0MY 111
GO T0 115 Do 112
305 _¥RITE(65,120) BNy RTLROPM,SOWWILITHETALPO,O0RTHO,DENS N - _ DO 112
44C FORMAT (GY,5IHNSTTRMINATIAN OF MNNULUS VARTATIOM IN AN AMNULAR NIS NOM 114
CKo /7 41X 1°HINPUT NATA, /41X, 1CH®S S 0388008 ,//,65X,15H0UTER RAOTUS = , DOY 31°¢
CFYCe Lo 2X ISHINNER RANTUS = (F1H,bL2YFHRIPM = WF154247745X,ITHOPANTA NOM L1E
e 8L SIPESS, AUTZR RADTUS = +F10.2+2X+I5HAPTAL DISPLACIMENT, ITNMEZ2 Q 004 117
CANTUS = F17.7+//7+5X2SHTHITA AT INMEF 24DTUS = W OPF15,742X 4174201 NOM 118
——_ _$£5S0%S RATIO =_+F1Z.8 2N 2 HORTHOTOOPIC RATIO =_+F10,Uy//7 55X 19HYAT pov 1i¢
SECTIAL DENSITY = ,F13.5,2Xe26HMUMRER OF RADIAL PO0INTS = 4134//7) O0OM 122
——ievem. GO TO 97 . —_ = —— .. D04 121
11% CONT IMUC poM 122
—— .. .60 7T05 .. e = .—-.DOY 122
120 COMTI INUE pov 124
CALL_EXIT .0OM 125
END DNy 12¢
o Somm—
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SUBROUTINE STRESS(N,RA,GRH0,SI,S0,UI,02THO,PO, ETHETA.IBOND.IST.RI. STR 1 |
- . $RO) s — =T . ..ST1R. 2 |
Cc STR 3 H
........ DIMENSION RE1TIV,FTHET(1L39,50C(129),82201C9),CC(136),00(320), STR . |
s PHI(1C ) 4PHIP(170) \PHIPP(102),SIGRI13C),SIGT(1%2),U(100) STP 5 f
b { sROBI1CZI W ITIL (24,41) SIR._ 6
DIMINSTION RA(13C),AA(1)1),ZE(10D) STR 7
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